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Both computational and biological systems have to make decisions about switching from one 

state to another. The ‘Approximate Majority’ computational algorithm provides the 

asymptotically fastest way to reach a common decision by all members of a population 

between two possible outcomes, where the decision approximately matches the initial 

relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes 

also makes a decision before it induces early mitotic processes. Here we show that the switch 

from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by 

a system that is related to both the structure and the dynamics of the Approximate Majority 

computation. We investigate the behavior of these two switches by deterministic, stochastic 

and probabilistic methods and show that the steady states and temporal dynamics of the 

two systems are similar and they are exchangeable as components of oscillatory networks.  

Introduction 

At the core of the biochemical networks that regulates the cell cycle there is a switch that 

triggers an irreversible transition from one critical stage to the next
1
. To understand the 

general properties of this switch across different species one may simplify the molecular 

interactions found in real organisms and abstract over the molecular species that are used 

by different organisms for the same functions
2,3

. In that abstract sense, the cell cycle 

transition to M phase has been shown to employ a universal switching mechanisms in all 

eukaryotes
4,5

. The mitotic entry regulator Cyclin Dependent Kinase (Cdk) activates its own 

activator Cdc25 and inhibits its inhibitor Wee1 and with these two positive feedback loops 

the system can abruptly switch from low to high Cdk activity state. The structure and 

properties of this molecular switch have been widely studied
6-8

, and successful mathematical 

models of the switch and its functional context (the cell cycle oscillator) have been built
9,10

. 

There is evidence that related networks are used in other cell cycle transitions
11,12

. 

From the point of view of dynamical systems, the basic features of the cell cycle switch are 

essentially understood: non-linear kinetics and positive feedbacks induce bistability (needed 

for switching) and result in hysteresis (needed to resist switch-back)
13-15

. Such kinetic 

behavior, however, could be achieved by many different networks, while in nature we find a 

specific universal structure of the network. For example, the required positive feedbacks are 

produced by double-negative and double-positive loops together
16,17

. What is special about 

this structure of the universal network, apart from its required function? How does the 

system handle noise and how does it relate to other non-biological switches?  

To answer these questions we shift our perspective from dynamical systems to computing 

systems. We ask: what does the cell cycle switch compute, and how does it compute it? We 

find that a fundamental algorithm from distributed computing
18,19

, the Approximate 
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Majority (AM) algorithm
20

 matches both the networks structure and the kinetics of the cell 

cycle (CC) switch; therefore, as we shall describe, the network structure derives from the 

algorithm, subject to biological constraints. The AM algorithm computes the majority of two 

finite populations by converting the minority population into the majority population, so 

that a single population results; it uses a third ‘undecided’ state of the population, from 

where autocatalysis can drive the individuals into either of the final states. The algorithm 

has been studied in the context of Population Protocols
21

: a model of computation and 

related algorithms for resource-limited interacting agents (such as networks of 

environmental sensors). It not only switches a majority into a totality, but it does so in a 

particular way that is (1) fast: with high probability only O(N log N) binary interactions 

(consult the Methods section for asymptotic notation) are required for a population of size 

N (
20

 Theorem 1), (2) reliable: above a certain threshold the true initial majority wins with 

high probability (
20

 Theorem 2), and (3) robust: the algorithms still functions correctly in 

presence of a subpopulation of the order of sqrt(N) that behaves incorrectly or even 

‘deviously’ (
20

 Theorem 4). Moreover, the algorithm is asymptotically optimal in the number 

of reactions required to switch a majority into a totality, because at least order of N log N 

interactions are required for each element of the population to interact, directly or 

indirectly, with every other member. An interesting question is how close nature can come 

to this optimum.  

The AM algorithm can be described chemically in terms of just 4 catalytic and autocatalytic 

reactions (equation 1). The comparison between AM and CC, however, is not 

straightforward. To carry it out we need to extend our understanding of both systems: in the 

computing literature it is not common to consider AM in terms of dynamical systems, which 

are usually continuous, and in the biological literature is not common to consider CC in 

terms of computational systems, which are usually discrete. The AM network structure is 

different from (simpler than) the CC structure, but we argue that the differences are 

dictated by biological constraints, and that both the computational and the dynamical 

properties of AM are preserved by the transformations required to turn it into CC so that the 

constraints are satisfied. In particular, we show that (1) the structure of AM well implements 

an input-driven switching function (in addition to the known majority function), (2) the 

structure of CC well implements a input-less majority function (in addition to the known 

switching function), (3) the structures of AM and CC are related, and an intermediate 

network shares the properties of both, (4) the behaviors of AM and CC in isolation are 

related, (5) the behaviors of AM and CC in oscillator contexts are related, (6) a refinement of 

the core CC network, known to occur in nature, improves switching performance and brings 

it in line with AM performance.  

Results  

We investigate and compare four networks that perform switching between a population x 

and a population y. In all our systems (Fig. 1) x and y are converted to each other by 

reactions that are directly or indirectly driven by x and y, in such a way that each system 

contains two positive feedback loops that may also act through intermediaries or by double 

inhibition.  
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We consider first a system derived from AM by removing the intermediate species b, leading 

to two coupled positive feedbacks that works by Direct Competition (DC) between x and y. 

This network is depicted in figure 1A.1 and corresponds to the two autocatalytic reactions x 

+ y → y + y and y + x → x + x. (A black ball over a reaction arrow represents presence of a 

catalyst.) The AM (Approximate Majority) network is depicted by an abbreviated graphical 

notation in figure 1B.1, which is explained in figure 1E,F. Namely, a pair of ‘pinched arrows’ 

between a pair of species such as x,y represents four reactions with a common intermediate 

 

Figure 1: Switch kinetics in absence of external control. We study the convergence time (time to 

reach a stable state) of switching networks; in each column, one of two stable states can be 

reached from the initial conditions. All the reaction rates are set equal and all the species start at 

equal quantities (details are provided in Supplementary Materials). Columns A-D concern the DC, 

AM, SC, CC switches respectively. Row 1 gives a depiction of the networks from which one can 

precisely recover the chemical reaction networks according to our notation. A catalytic reaction is 

represented by a circle on top of an arrow; for example, the top right of (F) contains the reaction 

b+z→z+y with catalyst z. A reaction like x+y→y+y is said to be autocatalytic. The full diagram (F) 

depicts two catalysts, z and r, acting on species x and y through a shared intermediary b, 

representing the 4 reactions x+z→z+b, b+z→z+y, y+r→r+b, and b+r→r+x. We use a more 

compact pinched-arrow graphical notation (E) to represent the same network as (F), hiding the 

intermediary species b that is assumed not to enter any other reaction. Note that if multiple 

catalysts act on the same pinched arrow (as in Fig. 2), they all act on the hidden intermediary in 

the same way. Row 2 contains deterministic simulations for the mass action ODEs of the 

respective systems for four values of the initial discrepancy between x and y, from 10% to 0.01% 

(not meaningful for DC as the system would rest at its initial setting), (Y-axis scale on the right). 

Row 3 shows sample stochastic simulations consisting of individual traces (black lines) of the 

Gillespie algorithm. The background heat maps, shown in logarithmic scale, give the probability 

Pr(xi|tj) that a system will have xi molecules of x at time tj. The horizontal axis is time, and the 

vertical axis is concentration (row 2) or number of molecules (row 3). Subscripts ‘s’ are for 

stochastic variables and ‘p’ for probabilistic variables. 
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species b (specific to the pair x,y): the intermediate species is omitted. The AM network 

therefore consists of 4 reactions (of mass action kinetics): 

x + y → y + b  catalytic in y 

b + y → y + y  autocatalytic in y    (eq. 1) 

y + x → x + b  catalytic in x 

b + x → x + x  autocatalytic in x 

for some intermediate b. The pinched-arrow motif is suggestive of multi-site modification 

(e.g.: phosphorylation/dephosphorylation)
22,23

. 

In nature it is not common to find direct autocatalytic reactions, and especially mutually 

autocatalytic reactions like in AM. We can however replace them with mutually catalytic 

reactions that are not directly autocatalytic. We introduce intermediate catalysts r, activated 

by x (from a reservoir p) and activating x, and z, activated by y (from a reservoir w) and 

activating y. This transformation results in the network SC (Simply Catalytic) of figure 1C.1, 

where we use pinched-arrow transitions for the new species too (other choices might be 

suitable). Here we need to introduce additional catalysts t,s to give a threshold for the self-

activation reactions of x and y respectively.  

Natural systems that switch a molecule between two states will normally have that molecule 

being active in one state and inactive in the other. However in AM, and still in SC, both 

states x and y are active and catalyze different reactions. Bifunctional enzymes exists in 

various organisms
24,25

, but in the case of the cell cycle switch there is no evidence that Cdk 

would have separate type of activities in its different forms. To move closer to CC we further 

transform SC in figure 1D.1: we remove the catalytic activity from y, and we are therefore 

left with z activating y, which is inactive. To deactivate y we must therefore deactivate z; this 

function is taken over by x, which on one hand activates itself through r, and on the other 

hand deactivates y through z (note that the role of s also has reverted compared to its role 

in SC). This final transformation of the network is certainly non-obvious, but the network so 

obtained turns out to be the characteristic network of the cell cycle (CC) switch
4,8

, with x and 

y corresponding to active and inactive forms of cyclin dependent kinases, and z and r 

resembling active forms of Wee1 and Cdc25 respectively (see Supplementary Materials for 

the exact correspondence). 

AM and CC as isolated systems 

We now compare the performance of these four switches by deterministic
26

, stochastic
27

, 

and probabilistic analysis
28

. We first examine the convergence time of the switches: the time 

to switch from an unstable initial state to one of two stable states. In our analysis, all the 

rates are set to 1.0 and the populations start at similar levels. The second row of Figure 1 

contains simulations of the deterministic ODEs of the systems, for different initial small, but 

non-zero, differences between x and y. The black traces in the third row of Figure 1 are 

individual stochastic simulations for systems with molecular counts of the order of 

thousands of molecules, starting with all species at the same level including x=y. The 

deterministic system would not show the break of the symmetry from a totally balanced 

initial condition, while stochastic noise is enough to move the systems out of this unstable 

steady state. The heat maps in the third row of Figure 1 are probability distributions for 



Scientific Reports 5 

 

systems with low molecular counts, of the order of tens of molecules, again starting with all 

species at the same level. The three analysis techniques address different aspects and 

constraints. Deterministic simulation gives a characterization of the mean behavior of a 

system, but does not address noise characteristics. Noise can be readily observed in the 

stochastic simulations, but at very low counts and high noise individual traces give little 

information. The probability distributions, on the other hand, give a precise picture of a 

system at low count, but become computationally unfeasible at higher count. 

Timing of transitions 

The analysis of AM, SC, and CC indicates rapid switching and convergence to a stable state 

after an initial hesitation due to breaking of the symmetry of the initial conditions. If the 

initial conditions are not so symmetrical, the switching happens more quickly: we essentially 

investigate the worst-case scenarios. We now discuss the performance of the individual 

switches. 

The Direct Competition switch (DC) (Fig. 1A.3) can rest in two different states. If all the 

molecules are ever found in state x or state y then the system remains in that state, because 

at least a single molecule from the other species is needed to catalyze reactions that move 

the system away from these states. However, the path to reach such a steady state from 

arbitrary starting conditions is a random walk, taking expected O(N
2
) molecular interactions 

to achieve, with each interaction moving the system randomly one way or the other. 

Moreover, any small perturbation of such a steady state has a chance to move the system to 

the other state, again by a random walk: the steady states are not robust to noise, thus the 

system is not bistable from a dynamical point of view. The deterministic ODE model of this 

system has all the right hand sides of the equations equal to zero, thus the deterministic 

system remains at its initial condition (not shown).  

The Approximate Majority switch (AM) is bistable (Fig. 1B.2-3), and the expected time to 

reach a stable state from any starting condition is with high probability less than O(N log N) 

molecular interactions and O(log N) time steps, and in fact approximately 3 log N in the 

worst case of equal starting conditions x = y 
20

. The stable states are completely stable: once 

reached, no further reactions can happen. Moreover, if the initial state has a majority of 

either x or y exceeding ω(sqrt(N) · log N) (a low percentage at high molecule numbers), then 

with high probability the system will settle in the state that has the initial majority
20

. This 

implies that the vicinity of the two stable states, where either x or y have a wide or total 

majority, is resistant to perturbations. 

The Simply Catalytic switch (SC) exhibits the same convergence behavior as AM modulo a 

small time factor (Fig. 1C.2-3). Note however that SC no longer stabilizes at the maximal 

level completely. The stable states are overwhelmingly but not completely stable because of 

the continued bias of the reverse reaction catalysts (s and t) which work against x,. 

The Cell Cycle switch (CC) preserves much of the AM-like behavior, such as fast decision (Fig. 

1D.2-3). In addition to the lack of complete stability, as in (SC), the switch is no longer fully 

symmetrical: when y is in majority x approaches zero and y (not shown) reaches maximum, 

but when x is in majority it is counteracted by the fixed bias s that keeps some z active and 

constantly drives some x to y, thus x settles well below the maximum level. SC and CC have a 

bit slower transition time as well (approximately double the time, compared to AM), which 

might be caused by the same effect. These discrepancies between AM and CC are resolved 

in biological systems: in Discussion we examine extra feedbacks that appear in cell cycle 
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systems
29

 and maximize x levels. Possibly such feedbacks evolved exactly to allow a full 

activation of x, making CC dynamics even closer to that of the efficient system of AM. 

Effect of noise on switches 

The stochastic and probabilistic analyses, both ultimately based on the chemical master 

equations of the systems
30

, can be compared directly in the third row of Figure 1, showing 

that the stochastic traces at a certain system size are compatible with the probability 

distributions at a smaller system size (the relative time scaling is based on the computational 

complexity of the algorithms, and is described in Supplementary Materials). This comparison 

shows close similarity between AM and SC, and good similarity between those two and CC 

apart for the fact that CC does not switch fully to x due to the bias provided by s. Noticeably, 

even though a system starts in neutral initial conditions (x = b = y), it randomly but rapidly 

converges to x or y dominance in AM, SC, and CC. DC is however quite different from the 

others, with two steep hills representing the stable states, and a wide flat region in between 

where stochastic trajectories may wander.  

The deterministic analysis in the second row or Figure 1, based on the mass action ODEs, is 

not directly comparable with the other two. For example, in the extreme case of initial 

conditions x = y the stochastic system still converges with high probability according to the 

O(N log N) theoretical bound, but the ODEs describe the system as remaining in the unstable 

steady state x = y forever. Therefore, in the deterministic case we analyze various non-zero 

initial discrepancies between x and y, which still show similarities between AM and CC: a 

logarithmic decrease in disparity leads to linear increase in timing. (The deterministic version 

of DC, omitted, is degenerate: its stochastic version is a pure bounded random walk.) 

Both the deterministic and stochastic/probabilistic analyses indicate that CC is only about 

twice as slow as the ‘optimal’ AM algorithm, and has the same speed as SC. Hence there is 

not a great penalty for the more complex CC network. Further speed optimizations of CC are 

examined in Discussion. 

External control of the AM and CC systems 

We now compare the steady state response of the four switches to external stimuli. The 

switches of figure 1 are augmented in Figure 2 with external inputs sx (switch-to-x) and sy 

(switch-to-y) acting on both internal steps of the pinched arrows in panels B-D. The plots in 

the second row of figure 2 integrate three types of steady-state analysis: deterministic, 

stochastic, and probabilistic, for different system sizes. In each case we vary the input value 

sx and we observe the steady state output value of x, with sy remaining fixed; all rates are 

1.0 and all species start at equal level, except for the varying sx and the fixed sy. 

DC shows a hyperbolic response, with no ultrasensitivity, bistability, or hysteresis (Fig. 2A.2). 

AM and SC show very similar hysteresis responses (Fig. 2B,C.2): starting at the origin with 

increasing sx the system stays on the lower trajectory until the jump point indicated by the 

stochastic trace, and continues on the upper trajectory. With decreasing sx, the system 

jumps from high to low at a different jump point. CC shows a similar hysteresis response, 

again somewhat depressed in its maxima as in figure 1. The presence of a clear hysteresis 

cycle in AM, SC, and CC confirms the ability of these systems to act as good switches, unlike 

DC. Although the hysteresis parameters are tunable in the different systems, and AM has 

fewer species and parameters, there is good agreement between their dynamical behavior. 

There is also uniform agreement about the response of each network at different systems 
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sizes, with the deterministic, stochastic, and probabilistic analysis largely overlapping. Still, 

the stochastic and probabilistic analysis show that noise can induce the transitions slightly 

before the deterministic bifurcation point is reached, thus noise can advance the transitions 

between the two states
31

.  

 

All the models of figure 1 contain two positive feedback loops. In general, it is known that to 

establish bistability and hysteresis one positive feedback (and the presence of nonlinearity) 

is enough
14,32

. Models of the cell-cycle switch have been investigated in face of the removal 

of one of the two positive feedback loops, and it has been shown that the removal of one of 

the two loops decreases the efficiency and the robustness of the CC switch
6,7,12

. In the 

Supplementary Materials we repeat this analysis for the AM and CC models and show that 

the removal of either loops leads to a reduced parameter regime for bistability in both 

models. Thus, also in this respect the AM and CC models behave qualitatively similarly, but it 

is worth noting that the CC module is more sensitive (works in a smaller parameter range 

and does not provide full conversion to both states), suggesting that AM is indeed the 

minimal model that can provide robust and complete switching dynamics. 

 

Figure 2: Switch equilibrium in presence of external control. We study the steady state response 

of our switching networks. Row 1 shows the four systems of figure 1 extended with external 

controls sx (switch-to-x) and sy (switch-to-y) in gray. On row 2, the horizontal axis represents the 

value of the sx input, and the vertical axis the value of the resulting x output at steady state. The 

value of sy remains fixed throughout; as in figure 1 all other initial values and rates are set equal. 

In each plot, the black line is the bifurcation diagram for the mass action ODEs of the systems 

(solid = stable, dashed = unstable steady states), showing that each system except the first one 

exhibits hysteresis; the axes represent concentrations with values that match the ovelayed plots 

(arbitrary units). The heat map in the background details the discrete probability distribution (in 

log scale) of a system composed of 5 molecules of each species, except for sy=3 and with sx 

varying in 0..15. A point (sxi, xj, zk) in the heat map, for 0 ≤ zk ≤ 1, means that at equilibrium (after 

a sufficiently long time) the discrete probability of the system being found with xj molecules of 

species x on an input of sxi molecules of species sx is equal to zk. The noisy red line is a single run 

of a steady-state stochastic simulation with maximum x=150 and with sy=30; sx is increased 

slowly to obtain the lower trajectory and the jump up, and is then decreased slowly to obtain the 

upper trajectory and the jump down.  
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AM and CC Switches in the context of oscillators 

Having established that AM and CC have similar characteristics as stand-alone 

computational systems and dynamical systems, we investigate whether AM switches can 

drive oscillations with characteristics similar to those of the cell cycle. There is a large 

literature on various models of cell cycle oscillators
9,10,33

. In many of these a CC switch is 

coupled with another switch in a negative feedback loop
34

. Negative feedback loops can 

induce oscillations even without the presence of positive feedbacks, but the positive loops 

make the oscillations more robust as the system periodically switches between two states 

(relaxation oscillations)
35-37

. Connectivity between these switches may vary, but all such 

switches show nonlinearity
38

.  

 

We consider first an oscillator network structure inspired by a mechanical oscillator (the 

Trammel of Archimedes
39

), where each stable state of a switch produces a transition in the 

other switch, in a repeating pattern (Fig 3A.1 and Supplementary Materials). Two AM 

switches coupled in such way produce a robust limit-cycle oscillator (2AM Full) with a self-

stabilizing amplitude and frequency (Fig. 3A.2). Oscillations are found when ratio between 

the internal AM rates (ri) and the external rates connecting the switches (re) is approximately 

between 0.2 and 1.0. The detailed response to these parameters is investigated in a 

 

Figure 3: Switches in the context of oscillators. We study the three oscillators depicted in column 1: 

(A) one consisting of two fully connected AM switches; (B) one where two of the connections are 

replaced by fixed biases; (C) one where we further replace an AM switch with a CC switch. Column 2 

(stochastic high-molecular-count simulations) shows oscillations over time for chosen values of re/ri, 

where re is the common rate for the connections between switches (gray lines), while ri is the 

common rate for all the reactions within a switch (black lines). Column 3 explores deterministic 

parameter variation in phase space (x1 vs. x2) and bifurcations (re/ri or sx vs. x1). Column 4 combines 

a deterministic plot (black line), and a probabilistic low-molecular-count heat map in phase space 

(x1 vs. x2) for a single value of re/ri, from column 2. The values of sx and sy are fixed to 1/3 of the 

max value of the switching species, and their reactions have rate re. 
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bifurcation diagram (Fig. 3A.3) and on a heat map of the full probability distribution (Fig. 

3A.4). We observe that even at the trivial parameter combination of all internal AM rates 

equal to 1, the system shows oscillations that are robust in a wide regime of external 

coupling rates that control the strength of the negative feedback loops between the two 

switches. The oscillations are born with high amplitude at a SNIC/SNIPER bifurcation (Fig. 

3A.3), as it has been shown for detailed cell cycle models
11

.  

The model of Figure 3A contains several feedback loops connecting the switches, while the 

majority of cell cycle models contain a single negative feedback loop. To better reflect those 

models, two connections have been cut in Figure 3B (2AM Inner) and replaced by fixed 

inputs resembling the effects of cyclin production (sx) and a threshold on Cdc20/APC 

activation (sy)
40

. This network is still able to produce robust oscillations, although in a slightly 

reduced range of the parameters of the negative feedback loop (Fig. 3B.3). Some of the 

parameter regimes produce the profiles of relaxation oscillators (Fig. 3B.2, top and Fig. 

3B.4), typically shown by complex cell-cycle models
15,40

. 

Finally, in Figure 3C we replace one of the AM switches with a CC switch, so that the 

resulting oscillator (CC-AM Inner) as a whole more clearly resembles a cell-cycle oscillator. 

This also shows that even in the context of a wider network the AM and CC switches are 

comparable and interchangeable. The choice of the re/ri ratio now becomes more critical, 

and large oscillation amplitude is more difficult to obtain, but the system still show 

oscillations similar to those of the similarly wired 2AM Inner system and to those of earlier 

cell cycle models
15,40

. The bifurcation diagrams of these two systems also look similar to each 

other and to classical published analysis
11,15

: in figure 3B.3 and 3C.3 we plot the steady 

states and amplitudes of oscillations depending on the input parameter sx. 

The external inputs to the oscillators are analogous to cyclin production for sx and to cyclin 

degradation for sy. In natural networks these inputs feed into the oscillator in more complex 

configurations than in our models
9,10,33

 (Supplementary Materials). Still, we have 

demonstrated that switches with the general characteristics of AM easily lead to robust 

oscillators if wired in an appropriate configuration. 

Discussion 

The boundary between dynamical systems and computational systems is not clear-cut: 

when does an ‘analog’ continuous system give rise to ‘digital’ information processing, and 

when does a collection of ODEs become a digital circuit? Still, there are precise 

characterizations of computational power, both qualitative (e.g., whether a computational 

system is Turing-powerful or not) and quantitative (e.g., whether an algorithm runs in O(log 

N) or not). One can discuss whether a dynamical system falls in one of those classes, and 

what kind of algorithm it implements when seen as a computational system. There is 

increasing interest in understanding what kind of physical and biological systems can 

compute in that sense
41

, and it has been proposed that a computational outlook can help in 

our understanding of biological systems
42-47

.  

Here we have investigated a classical cell cycle network in terms of the algorithm it 

implements, and we claim we have gained new insights in its structure, function, and 

performance. We have illustrated how the computationally effective AM network and the 

biologically relevant CC network are two ways of achieving ‘majority switching’, yielding two 

distinct algorithmic implementations of essentially the same behavior with the same 
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asymptotic properties. Moreover, we have shown that their behavior is sufficiently similar 

that they can be readily exchanged for one another in an oscillator context. We now discuss 

some general characteristics of switching networks in the context of AM. 

 

Mechanisms for non-linearity 

The effectiveness of both AM and CC comes from the fact that they both employ two non-

linear positive feedback loops. The non-linearity in our systems comes from (a purely 

catalytic version of) multi-step modifications
23

. In the context of cell cycle regulation, both 

transcriptional and post-translational modifications have been associated with 

nonlinearity
38

. In relation to the mitotic-switch regulating post-translational feedback, the 

role of multisite phosphorylation has been carefully investigated
48,49

. It has been established 

that for nonlinear response the phosphate groups have to be added and removed 

independently (distributive multisite phosphorylation), while if enzymes can add or remove 

all groups sequentially during a single binding event (processive multisite phosphorylation) 

then the nonlinearity is lost
23,50

. AM works like a distributive system (Fig. 4A): the common 

intermediate can be modified independently in both directions. (Adding more than one 

intermediate step for the conversion between x and y does not change the fundamental 

dynamics of AM.) If instead we use separate intermediates (Fig. 4B), then the system works 

processively: the separate intermediates can be further modified in only one direction 

during the transitions between x and y, and the system no longer exhibits an irreversible 

convergence to stable states.  

 

Figure 4: Nonlinearity in switching systems. We compare the nonlinear dynamics of the AM switch 

with some alternatives, via sample individual traces obtained form stochastic simulations. We have 

uniformly chosen rate 1.0 for unimolecular reactions (in (C) and (D)) and 0.001 for bimolecular 

reactions, with x = y initial conditions (all other species set at zero), and with 15000 max molecule 

counts as in figure 1. Panel (A) shows the same AM circuit as in figure 1B. Panel (B) shows a variation 

with two separate intermediates that are processively modified; the upper trajectories converge with 

a mixture of x and b, hence we plot x+b. Panel (C) shows mutual competition between x and y via 

dimerization; the upper trajectories converge with a mixture of x and b (the x-dimer), hence we plot 

x+2b, the total amount of x. Panel (D) shows direct mutual competition between x and y regarded as 

two enzymes regulated by Michaelis-Menten reactions; we plot x+c, the sum of the enzyme x plus 

the complex c with its substrate y. Note that x+c is not constant, and similarly for y+b, and hence the 

system does not operate as a pair of normal enzymatic reactions where those sums are preserved. 
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Another way to build nonlinearity into biological systems is to let the regulators oligomerize, 

with only the complex having a catalytic activity
38

. Similar changes can be made in AM: we 

can allow dimerization of x and y and have these dimers drive transitions between the two 

stable states (Fig. 4C). Models incorporating these changes allow AM-like switching between 

all-x and all-y states, but in the stable states we find a mixture of monomers and dimers of 

the winning species. Thus, such protocol would not work efficiently from a computational 

point of view.  

Another option is to consider a direct competition network like DC but where the catalytic 

reactions are Michaelis-Menten enzymatic reactions: these are intrinsically nonlinear 

reactions and could potentially replace the nonlinear multisite modification mechanism of 

AM. Note however that again here we have two separate (substrate-enzyme complex) 

intermediaries (Fig. 4D). When enzymatic reactions work in saturation we have zero-order 

ultrasensitivity or Goldbeter-Koshland switching
51

: these mechanisms are often used in 

biological network models to capture the dynamics of fast switches
52

. The AM-like positive 

feedback network incorporating enzymatic reactions, however, does not switch properly as 

some x and y always accumulate in one of the two intermediates
53,54

. On long time scales, 

the primary species and to a lesser degree the complexes oscillate randomly, revealing again 

that the common ‘undecided’ intermediate of the transition between x and y is an important 

feature of AM.  

Therefore, other plausible mechanisms for achieving nonlinearity in chemical systems do not 

appear to lead to improvements or alternatives to the AM switching algorithm. This suggests 

that distributive multisite modification is the simplest, most effective way of introducing 

nonlinearity in the system.  

Switching networks 

Previous literature has shown AM to be an efficient and robust decision algorithm
20

 and CC 

to be a robust biological switch
7,12

. We used deterministic, stochastic and probabilistic 

methods to characterize the kinetic and dynamic behaviors of the two systems and those 

that stand in the way of transforming one into the other. Cells do not use AM in its original 

form, since multifunctional enzymes that change their activity through modification are 

rare
55

. AM is robust to parameter changes, but due to its small size it is fragile to removal of 

its components, and thus evolutionary it cannot be stable
56,57

. Probably CC is the closest 

similar system that evolution has found to deal with important cellular decisions. 

Similar network structures may have evolved to deal with other biological decisions. The cell 

cycle switch is probably the most well characterized biological switch and it is highly 

conserved among eukaryotes. There are many other biological switches that are less well 

characterized
13,58

, but the existence of two positive feedbacks in their structure has been 

proposed. Such systems include the membrane transport regulatory switch, were Rab5 

helps its activation by activating Rabex5 and by inhibiting Rab7
59,60

. Another example is the 

apoptotic switch, where the caspase CASP3 cleaves and by this, activates its activator 

caspases CASP8 and CASP9 while also inhibiting its own inhibitor, XIAP
61

. Various models of 

the cell polarity establishment regulatory Cdc42 activation also incorporate double positive 

feedbacks in the system
62-64

. There could be many other biological switches that work with 

similar, Approximate Majority-type switching dynamics, and our other findings on the AM 

behavior may apply to these systems as well. 
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Switching efficiency 

The main difference between the behavior of AM and CC is that CC cannot fully turn on 

because external biases (s and t on Fig. 1D) keep inactivating the system. This leads to a 

reduced maximum in the steady state of the CDK-analog species x (Fig. 2D); thus CC is not as 

effective at switching as AM. But nature has solved this problem: CDK, through the 

Greatwall kinase
65

, also inhibits the phosphatase PP2A, which has the catalytic role of both s 

and t in our CC model. With this extra feedback loop, once CDK is active it suppresses the 

activity of the external inhibitors and allows its own full activation.  

 

The incorporation of this additional feedback into the CC model does in fact enable the full 

activation of x. The extended circuit (GW) is shown in Figure 5A, where s and t have been 

merged into s (analogous to PP2A), with x now inhibiting s. When x is not present, s can self-

activate (PP2A inactivates its inhibitor, the Greatwall kinase
29

) from an inactive form m, with 

the help of a fixed bias v. Even though v is still continuously counteracting x, its effect is 

much weaker than the direct effect of s in CC, and as a result x can achieve full activation. 

The resulting kinetics is shown in figure 5B for the deterministic system (cf. Fig. 2D.2), and in 

figure 5C for the stochastic and probabilistic systems (cf. Fig. 2D.3).  

Full activation is now achieved, but even more remarkably, the switching speed improves in 

the GW circuit, making it almost as fast as AM. This is shown in figure 5D via sample 

stochastic traces, with GW traces coming very close in performance to AM traces as 

opposed to CC traces. The additional circuitry has therefore two beneficial effects: improving 

the activation level of x, and also improving the activation speed of x by about a factor of 2, 

making it about as fast as the best known circuit. One could suspect that the original 

decrease in switching speed in SC and CC with respect to AM (Fig. 1) is due to the 

introduction of the intermediate catalysts, and therefore that the increased speed in GW is 

somehow due to the direct self-activation of s. However, introducing an intermediate 

species in the s loop still leads to the same speedup (Supplementary Materials). 

In conclusion, we have shown that the AM algorithm is the simplest expression of the task 

that is performed by the CC network. Although the AM algorithm has features that may be 

biologically unrealistic, it can guide the understanding of the properties of more complex 

biological networks. One may also speculate about whether related networks, such as SC 

might exist in nature, and whether other complex biological networks may have simple 

algorithmic explanations. 

 

Figure 5: Cell cycle switch with Greatwall loop. We study the GW network: a version of CC from 

Figure 1D.1 enriched with a feedback loop where x modulates the s and t biases (now unified into 

the s species). Panel (B) is analogous to Fig 1D.2, and panel (C) is analogous to Fig 1D.4, both 

showing an improved activation of x. Panel (D) is a comparison between the switching speeds of 

AM, GW, and CC, showing GW performing better than CC and about as well as AM. 
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Methods 

Asymptotic notation 

“f(x) is O(g(x))”, or “f is bounded by g asymptotically” is defined as: A function over the reals 

f(x) belongs to the set O(g(x)) iff there exist real numbers k > 0 and x0 such that f(x) ≤ k · g(x) 

for all x > x0. Further, “f (x) is ω(g(x))”, or “f dominates g asymptotically” is defined as: A 

function over the reals f(x) belongs to the set ω(g(x)) iff for all real numbers k > 0 there exists 

a real number x0 such that k · g(x) ≤ f(x) for all x > x0. Note that in, e.g., O(log x) the basis of 

the logarithm is not important because of the multiplicative constant k and the fact that 

logarithms in different bases differ only by a constant factor. 

Ordinary Differential Equation models 

Implementation of deterministic models were done as .ODE models, executable by the 

XPPAUT (http://www.math.pitt.edu/~bard/xpp/xpp.html)
26

 or Oscill8 (http://sourceforge 

.net/projects/oscill8) software packages. The model files and used parameter sets are 

provided in Supplementary Materials. 

Stochastic models 

The various chemical networks were modeled in SPiM Player v1.13 http://research 

.microsoft.com/en-us/projects/spim
27

. SPiM can represent a variety of reactive systems in its 

modeling language, including chemical reaction networks, and can then provide numerical 

simulations with a Gillespie-style solver: the models are included in Supplementary 

Materials. SPiM’s modeling language is a general computational language, and it allows us 

for example to program the slow sweeping of sx values in figure 1 within the model and in a 

single run. In SPiM we can study stochastic systems of the order of hundreds of thousands of 

molecules, and obtain an indication of the noise in the systems. For figure 1 row 3 we 

produced a sample of individual Gillespie trajectories: since we used a high molecular count, 

the stochastic noise is quite limited on the individual trajectories (for AM, SC, CC), but still 

the trajectories differ considerably. For figure 2 row 2 we run a Gillespie simulation at 

steady-state for each value of sx, except that all these simulations were done in a single run, 

slowly incrementing sx from 0 to max value, and then slowly decrementing it back to 0. The 

decreasing trajectory was then reflected and superimposed on the increasing trajectory, 

obtaining an image of the hysteresis cycle. We used low molecular counts to emphasize the 

noise. For figure 3 column 2 we run stochastic simulations at high molecular count; these are 

therefore comparable to deterministic simulations, but show that even stochastically we can 

obtain regular oscillations. 

Probabilistic models 

The various chemical reaction networks were modeled in PRISM v4.0.3 http://www. 

prismmodelchecker.org
28

. PRISM can encode a variety of stochastic and probabilistic 

systems in its modeling language, including stochastic chemical networks: the models are 

included in Supplementary Materials. When PRISM is given such a model with initial 

conditions (initial number of molecules and stochastic rates), it generates a continuous-time 

Markov chain for the system as a sparse matrix, where a state of the Markov chain is the 

vector of number of molecules of each species, and a transition in the Markov chain is the 

propensity of moving from the source state to the target state. We can then use the PRISM 

modelchecking language to ask questions about the (possibly very large) Markov chain, such 
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as computing the probability of reaching a state from another state. We ask three basic 

questions, and display the answers as heat maps. For figure 1 row 3, what is the probability 

that at time T there will be i molecule of species x (“P=? [F[T,T]x=i]”); for figure 2 row 2, what 

is the probability that at steady state there will be i molecules of species x (“S=? [x=i]”) for 

each value of sx; and for figure 3 column 4, what is the probability that at steady state there 

will be i molecules of species x1 and j molecules of species x2 (“S=? [ x1=i & x2=j ]”). The 

results we can obtain are limited by the size of the generated Markov chain; for example, 

the analysis of the CC circuit in figure 2 (with 15 molecules of x+b+y, etc.) generates ~2.5 

million states and ~25 million transitions. That Markov chain is built in a few seconds, but 

uses nearly all the memory we have available; the computation of the probabilities then 

takes about 48 hours on a standard laptop. In contrast, the AM circuit takes only a few 

minutes to analyze completely for the same size. The heat maps were generated in 

SigmaPlot www.sigmaplot.com from the PRISM data. 
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